
Are Graphs Hard in Rust?
@PayasR

Are Graphs Hard in Rust?

Are Graphs Hard in Rust?

Graphs

0

1

2

3

4

5

6

Category 1 Category 2 Category 3 Category 4

A bar graph

Series 1 Series 2 Series 3

Graph data structure

Questions…!

• What are graphs?

Graph representations:

• How do we represent graphs in our programs?

• Are all graph representations ‘hard’?

• Which ones are hard only in Rust but not in other languages (C++)?
Why?

A few questions to start with…

Graph Libraries:

• How do we design reusable graph libraries?

• Graph libraries = Graph representations + <Other components?>
Are these other components hard too?

• If Rust makes a few things harder, does it make anything easier?

What are graphs?

A graph G consists of:

• A set of vertices, V.

• A set of edges, E, containing pairs (x, y) such that both x and y are in V.

Vertices, V Vertices, V and Edges, E

Graph, G

What are graphs?

A graph G consists of:
• A set of vertices, V.
• A set of edges, E, containing pairs (x, y) such that both x and y are in V.
• Sometimes, some edges are associated with one or more edge weights.

Section 1:
Graph Representations

Graph
Representations:
Adjacency Matrix

• Represent graph as a V x V
matrix.

• An entry [m,n] in matrix is
zero if there is no edge
between vertices m and n.

• An entry [m, n] in matrix is
non-zero if there is an
edge between vertices m
and n.

Graph
Representations:
Adjacency List

• Array of V linked lists.

• Nth linked list contains vertices
adjacent to vertex N.

• In practice, this often takes the
form of a vector-of-vectors.

Graph
Representations:
Edge List (Arc List)

• Literally, a list of all edges in
the graph.

https://github.com/Project-OSRM/osrm-backend/wiki/Processing-Flow
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md

https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md

Graph
Representations:
Adjacency Array

• “A better representation
than edge lists for graph
traversal”
- RoutingKit docs

Source:
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://www.sciencedirect.com/topics/computer-science/adjacency-list

https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://www.sciencedirect.com/topics/computer-science/adjacency-list

Graph
Representations:
Doubly Connected
Edge List (DCEL)

• Used for planar embeddings
of graphs.

• Stores edges, vertices and
faces of the graph.

• Provides efficient
manipulation of edges,
vertices and faces.

• Used in Computer Graphics.

Source:
https://www.sciencedirect.com/topics/computer-science/graph-representation

https://www.sciencedirect.com/topics/computer-science/graph-representation

Graph
Representations:
Pointer-and-Struct

• Each vertex is a struct.

• Each vertex structure holds
pointers to adjacent
vertices in the graph.

Source:
https://www.sciencedirect.com/topics/computer-science/graph-representation

https://www.sciencedirect.com/topics/computer-science/graph-representation

Graph
Representations:
The Book

Source:
https://bookstore.ams.org/fim-19

Questions?
We’ll talk about graph libraries next.

Section 2:
Graph Libraries

The Design of Graph Libraries

A
 G

ra
p

h
 L

ib
ra

ry

The Design of C++ Graph Libraries:
Boost Graph Library

The Design of C++ Graph Libraries:
Boost Graph Library

The Design of C++ Graph Libraries:
Boost Graph Library

The Design of C++ Graph Libraries:
Boost Graph Library

The Design of C++ Graph Libraries:
Boost Graph Library

The Design of C++ Graph Libraries:
LEMON

https://github.com/tpet/lemon/blob/master/lemon/concept_check.h

The Design of C++ Graph Libraries:
LEMON

https://github.com/tpet/lemon/blob/master/lemon/concept_check.h

The Design of Rust Graph Libraries:
(rs_graph)
• Traits are first class citizens in Rust!!

https://docs.rs/rs-
graph/0.19.2/src/rs_graph/linkedlistgraph.rs.html

The Design of Rust Graph Libraries:
(rs_graph)
• Implementing graph traits to get concrete graph types:

The Design of Rust Graph Libraries:
(rust_road_router)
• Graph Traits:

The Design of Rust Graph Libraries:
(rust_road_router)
• Graph Implementation:

Comparing the C++ and Rust Libraries:
Graph Interfaces
• Traits being first class citizens in Rust saves us from

metaprogramming tricks and Boost MPL!

So, are generic graph interfaces hard in Rust?
No.

Comparing the C++ and Rust Libraries:
Graph Representations – Adj. Matrix

C++ Rust

Comparing the C++ and Rust Libraries:
Graph Representations – Adj. List

C++ Rust

Comparing the C++ and Rust Libraries:
Graph Representations – Pointer & Struct

C++ Rust

• ???

• Do you need it?

• Do you really need it?

• Use ‘unsafe’ and write tests.

Conclusion (?)

• So, are generic graph interfaces hard in Rust?
No.

• So, are some graph representations hard in Rust?
No, but pointer & struct graphs need ‘unsafe’ and tests.

• But you shouldn’t be using pointer & struct graphs anyway.

• For representations that you _should_ use, Rust code looks a lot like
C++ code.

Are Graphs Hard in Rust?

Are Graphs Hard in Rust?

Thank you!

• Tim Zeitz

• Dev Purandare

• Daniel Bittman

• Peter Wilcox

• Lawrence Lawson

• Soham

Thank you for your time.
@PayasR

(Twitter, GitHub, LinkedIn)

Bonus Slide: What about C++ Concepts?

