Are Graphs Hard in Rust?

@PayasR

Are Graphs Hard in Rust?

Are Graphs Hard in Rust?

Graphs

Graph data structure A bar graph

Category 1 Category 2 Category 3 Category 4

SN

w

N

[EY

o

M Series1 M Series?2 M Series3

Questions...!

* What are graphs?

Graph representations:

 How do we represent graphs in our programs?
* Are all graph representations ‘hard’?

* Which ones are hard only in Rust but not in other languages (C++)?
Why?

A few questions to start with...

Graph Libraries:

* How do we design reusable graph libraries?

e Graph libraries = Graph representations + <Other components?>
Are these other components hard too?

* If Rust makes a few things harder, does it make anything easier?

What are graphs?

A graph G consists of:
e A set of vertices, V.

* A set of edges, E, containing pairs (x, y) such that both xandy are in V.

o O
O o o &= Graph, G

@, O

Vertices, V Vertices, V and Edges, E

What are graphs?

A graph G consists of:

* A set of vertices, V.

* A set of edges, E, containing pairs (x, y) such that both xandy are in V.
* Sometimes, some edges are associated with one or more edge weights.

Section1:
Graph Representations

Graph

Representations: v
Adjacency Matrix [e e \
0 2 s [0] 3 3 8 3
* Represent graphasaVxV 0 5 2 ! : 4 4 4
matrix. Vi o 3 3 6 4215
1 5 7 3 3 ; 5 :
* An entry [m,n] in matrix is 3 1 4 6 8 19 0
zero if there is no edge 4 : 6 5 8 5 5 0
between vertices m and n. \ R
* An entry [m, n] in matrix is
non-zero if there is an
edge between vertices m const size t NUM_VERTICES = 10:

and n. |
size t Graph[NUM_VERTICES][NUM VERTICES];

Graph
Representations:
Adjacency List

* Array of V linked lists.

e Nt [inked list contains vertices
adjacent to vertex N.

* In practice, this often takes the
form of a vector-of-vectors.

std::

-

£ 0

= =

B
- i

- i
- i

struct Arc{
size_t node;
unsigned welght;

b

vector<std::vector<Arc>> Graph,;

Graph
Representations:
Edge List (Arc List)

* Literally, a list of all edges in
the graph.

index | start node id | target node id

(o) TN SN VT 6 T = Y]
vi B vl Bk Bow

struct Graph {
size t node_count;

std ::
std ::
std ::
std ::
std:

vector<size t> tail;
vector<size t> head;
vector<unsigned> geo_distance;
vector<unsigned> travel_time;

: vector<unsigned> speed;

https://github.com/Project-OSRM/osrm-backend/wiki/Processing-Flow
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md

https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md

Graph
Representations:
Adjacency Array

* “A better representation
than edge lists for graph
traversal”

- RoutingKit docs

Vertex array
(ArrayV)

Edge amray

3 1 8 B 7 2 5 6 7 (ArrayE)

struct

std::
std::
std::
std::
std::

};

Graph{

vector<size t> first adjacent vertex;
vector<size t> head;

vector<unsigned> geo_distance;
vector<unsigned> travel_time;
vector<unsigned> speed;

for(unsigned xy=first_out[x]; xy<first out[x+1]; +rxy){
unsigned y = head[xy];
// Xy 1s the arc from node x to node y

}

Source:
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://www.sciencedirect.com/topics/computer-science/adjacency-list

https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://github.com/RoutingKit/RoutingKit/blob/master/doc/SupportFunctions.md
https://www.sciencedirect.com/topics/computer-science/adjacency-list

Geometric Data Structures

Graph Michael T. Goodrich, Kumar Ramaiyer, in Handbook of

Computational Geometry, 2000

[]
[
Representatlons ¢ 2.1 The Doubly Connected Edge List (DCEL)
Muller and Preparata [50,57] designed a PSLG representation, which

Doubly conneCted they called the doubly-connected edge list (or DCEL). The DCEL for a
E L. DCEL PSLG G =(V, E, F) has a collection of edge nodes. This representation
dge Ist treats each edge as a directed edge; hence, it imposes an orientation

on each edge. Each edge node e = (v, v},) is a structure consisting of

six fields:

+ V,, representing the origin vertex (v,),

* Used for planar embeddings e e st vt 0
» V4, representing the destination vertex (v,),
Of gra p h S . + Fj, representing the left face as we traverse on e from V,, to Vj,

+ F, representing the right face as we traverse on e from V,, to V,,

i Sto re S e d ges’ Ve rt i Ce S a n d + CCW,, representing the counter-clockwise successor of e around

V,, and

l aces Of t h e g ra p h . « CCW,, representing the counter-clockwise successor of € around

V.

o PrOVideS effiCient The Figure 1 shows the DCEL representation of the edge e; in the
. . subdivision given.
manipulation of edges, j
vertices and faces. L%\\’“ ~ O] 4 oo

/
. .)\J / "—‘I_‘Ti“ 2 [
* Used in Computer Graphics. | \" fgu_me BN
\ ” | |—T

\.

fo

Source:
https://www.sciencedirect.com/topics/computer-science/graph-representation

https://www.sciencedirect.com/topics/computer-science/graph-representation

Graph
Representations:
Pointer-and-Struct

e Each vertexis a struct.

e Each vertex structure holds
pointers to adjacent
vertices in the graph.

- I

struct Node {
int node_ID;
std::vector<Node*> out_edges,

b

std:: vector<Node> Graph;

Source:
https://www.sciencedirect.com/topics/computer-science/graph-representation

https://www.sciencedirect.com/topics/computer-science/graph-representation

Graph
Representations:
The Book

FIELDS INSTITUTE
MONOGRAPHS

Efficient Graph
Representations

Jeremy P. Spinrad

American Mathematical Soclety

Source:
https://bookstore.ams.org/fim-19

Questions?

Section 2:
Graph Libraries

The Design of Graph Libraries

= — -

Whatever the requirements imposed on the representation are, the actual accesses are done using
an indirection: The iterators, the data accessors, the graph traits, and the decorators. This decouples
the implementation from the representation of the graph.

Design Patterns for the Implementation of Graph Algorithms

Dietmar Kiihl
Technische Universitit Berlin

Berlin, the 19th July 1996

96GT AInf WGT 2 ‘WIIg

IR JRHSIOATU(] AYSIUYIL,

Tqu3L Jeuna1q

SWLIOSTY ydern Jo uonejuswa[dwy o JoJ swIale UsIsa(

[Algorithm/Client

|

T~

I

/

/

Iterator Adjacency | | |l e = - - - Data
lterator Iterator Accessor
O o=
0 ol o—
—=8)
O (D
O O
\ /

Figure 4.1: Components of the abstraction from the representation

~

e |

o— []

Abstraction

Representation

9661 ATnf THGT 21 ‘W12

TI[Iag BNSTATU[) SISTIYIAT,

WS JeweIq

o
a
@,
g
=
a=;
&
=
:
[72]
I°8
S
=
=
a
=)
=]
S,
[}
=]
[¢]
=1
E
&
=
=]
=
o
e
o)
=
k=]
=
>
&
[1=]
o
g.
=
=]
©

[Algorithm/Client]

- _"’,_r’_’ f{’ \\\
/ / \ '
L
[terator Adjacency e = = = Data
lterator Iterator Accessor
L
O [Abstraction
O e !
- i 5 R
@) (e
N \ i
- \' / N
Representation

Figure 4.1: Components of the abstraction from the representation

A Graph Library

The Design of C++ Graph Libraries:
Boost Graph Library

L L

of objects. Similarly, the| BGL defines a collection of concepts [that specify how graphs can
be mspected and manipulated. In this section we give an overview of these concepts. The
examples n this section|do not refer to specific graph types;| they are written as function
templates with the graph as a template parameter. A generic function written using the BGL
interface can be applied to any of the BGL graph types—or even to new user-defined graph

types. .

CHAPTER 1. INTRODUCTION

-

template <typename Graph> The Boost Graph Library
bool is_self_loop (typename graph_traits<Graph>::edge_descriptor e, const Graph& g) Load LU A e)
{ Jeremy G. Siek

Lie-Quan Lee

typename graph_traitsk Graph>::vertex_descriptor u, v; PEECRIEETRIE

d by Alexander Stepanov

u = source(e, g); : >
v = target(e, g); R
return u == v; : RS n e

}

C+ In-Depth Series + Bjarne Stroustrup

The Design of C++ Graph Libraries:
Boost Graph Library

/** @name|Traversal Category Traits |

* These traits classify graph types by their supported methods of
* vertex and edge traversal.

*/

template < typename Graph >
struct|is_bidirectional_graph]|
: mpl::bool <
1s_convertible< typename graph_traits< Graph >::traversal_category,
bidirectional_graph_tag >::value >

The Design of C++ Graph Libraries:
Boost Graph Library

/** @name|Traversal Category Traits |

* These traits classify graph types by their supported methods of
* vertex and edge traversal.

*/

template < typename Graph >
struct|is_adjacency matrix |
: mpl::bool <
1s_convertible< typename graph_traits< Graph >::traversal_category,
adjacency_matrix_tag >::value >

The Design of C++ Graph Libraries:
Boost Graph Library

/*% gname Directed/Undirected Graph Traits */

template < typename Graph >
struct|is_directed_graph |
: graph_detail::is_airected_tag¢
typename graph_traits< Graph >:!::directed_category >
{

b

template < typename Graph >

struct is_undirectedEEFaph L mpl::not_< is_directed_graph< Graph > >
{

b

The Design of C++ Graph Libraries:
Boost Graph Library

“__.one of the most highly regarded and expertly designed C++ library projects in the world.”
o os — Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

+ LI BRARIES

. bOOSt THE BOOST MPL LIBRARY

LI B RARI ES

Copyright: Copyright © Aleksey Gurtovoy and David Abrahams, 2002-2004.
License: Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_8©.txt or copy at http://www.boost.org/LICENSE _1_0.txt)

The Boost.MPL library is a general-purpose, high-level C++ template metaprogramming framework of compile-time algorithms, sequences and metafunctions. It provides a conceptual foundation and an extensive set of
powerful and coherent tools that make doing explict metaprogramming in C++ as easy and enjoyable as possible within the current language.

The Design of C++ Graph Libraries:
LEMON

namespace lemon {

namespace concepts {
/// \ingroup graph concepts
/// \brief Class describing the concept of undirected graphs.

/// This class describes the common interface of all undirected

/// graphs,

class Graph {

private:
/// Graphs are \e not copy constructible. Use GraphCopy instead.
Graph(const Graph&) {}
/// \brief Assignment of a graph to another one is \e not allowed.
/// Use GraphCopy instead.
vold operator=(const Graph&) {}

https://github.com/tpet/lemon/blob/master/lemon/concept_check.h

The Design of C++ Graph Libraries:

LEMON

template <typename _Graph>
struct Constraints {
vold constraints() {
checkConcept<BaseGraphComponent, Graph>();
checkConcept<IterableGraphComponent<>, Graph>();
checkConcept<IDableGraphComponent<>, Graph>();
checkConcept<MappableGraphComponent<>, Graph>();

s

7
T

template <class Concept>
inline void function requires()
{
#if ldefined(NDEBUG)
void (Concept::*x)() = & Concept::constraints;
::lemon::ignore_unused variable warning(x);
#endif

}

template <typename Concept, typename Type>
inline void checkConcept() {
#if ldefined(NDEBUG)
typedef typename Concept::template Constraints<Type>» ConceptCheck;
void (ConceptCheck::*x)() = & ConceptCheck::constraints;
::lemon::ignore unused variable warning(x);
#endif

}

https://github.com/tpet/lemon/blob/master/lemon/concept_check.h

The Design of Rust Graph Libraries:
(rs_graph)

* Traits are first class citizens in Rust!!

// A trait for

!/, general undirected, sized graphs.
pub trait Graph<'a>: GraphSize<'a> + Undirected<'a> {}

impl<'a, G> Graph<'a> for G where G: GraphSize<'a> + Undirected<'a> {}

'/ A trait for general directed, sized graphs.

pub trait Digraph<'a>: Graph<'a> + Directed<'a> {}

impl<'a, G> Digraph<'a> for G where G: GraphSize<'a> + Directed<

/// An item that has an index.
pub trait Indexable {
n index (&) —> usize;

oranh/0.19.2/src/rs eraph/linkedlisteranh.rs.html

The Design of Rust Graph Libraries:
(rs_graph)
* Implementing graph traits to get concrete graph types:
'/ The linked list based graph data structure.
pub struct LinkedListGraph<ID = u32, N

'y List of nodes.
nodes: Vec<NodeData<ID, N>>,

pub struct LinkedListGraphBuilder<ID, N, E> {

i) /// The graph to be built.

. List of edges. graph: LinkedListGraph<ID, N, E>,

edges: Vec<kdgeData<ID, E>>, /// The last outgoing edge for each node (if there 1is one).

last_out: Vec<Optionc<

impl<ID, N, E> Builder for LinkedListGraphBuilder<ID, N, E>
where

ID: PrimInt + Unsigned,

N: Default,

E: Default,

The Design of Rust Graph Libraries:
(rust_road_router)

* Graph Traits:

pub trait Graph {
fn num_nodes(&self) — usize;
fn num_arcs(&self) — usize;
fn degree(&self, node: NodeId) — usize;

trait LinkIterable<'a, Link>: Graph {

|

type Iter: Iterator<Item = Link> + 'a;

fn link_iter(&'a sel#, node: NodeId) — Self::Iter;

trait MutLinkIterable<'a, Link>: Graph {

|

type Iter: Iterator<Item = Link> + 'a;

fn link_iter_mut(&'a mut sel#, node: NodeId) — Self

The Design of Rust Graph Libraries:
(rust_road_router)

* Graph Implementation:

pub struct InfinityFilteringGraph<G>(pub G);

impl<G: Graph> Graph for InfinityFilteringGraph<G> {
fn degree(&self, node: NodeId) — usize {
self.0.degree(node)

}

fn num_nodes(&self) — usize {
self.0.num_nodes()

}

fn num_arcs(&self) — usize {
self.0.num_arcs()

Comparing the C++ and Rust Libraries:
Graph Interfaces

* Traits being first class citizens in Rust saves us from
metaprogramming tricks and Boost MPL!

So, are generic graph interfaces hard in Rust?
No.

Comparing the C++ and Rust Libraries:
Graph Representations - Adj. Matrix

C++ Rust

const size t NUM_VERTICES = 10;

size t Graph[NUM_VERTICES][NUM_VERTICES];

const NUM_VERTICES = 10;

let mut Graph = vec![vec![@; NUM_VERTICES]; NUM_VERTICES];

Comparing the C++ and Rust Libraries:
Graph Representations - Adj. List

C++ Rust #:[derive({:crpy! Clone, Debug)]
pub struct WelghtedEdge<W>
where

struct Arc{ W: WeightTrait,
size t node; {
unsigned weight; dst: u32,

& weight: W,
}

std:: vector<std::vector<Arc>> Graph, pub struct Graph<E>

where
E: EdgeTrait + Debug,

{

adj _list: Vec<Vec<E>>,

}

Comparing the C++ and Rust Libraries:
Graph Representations - Pointer & Struct

C++ 2 5 Rust
« 277

* Do you need it?

* Do you really need it?

e Use ‘unsafe’ and write tests.

struct Node {

- B
int node ID;

std::vector<Node*> out_edges;

s

std:: vector<Node> Graph;

Conclusion (?)

e So, are generic graph interfaces hard in Rust?
No.

* So, are some graph representations hard in Rust?
No, but pointer & struct graphs need ‘unsafe’ and tests.

* But you shouldn’t be using pointer & struct graphs anyway.

* For representations that you should use, Rust code looks a lot like
C++ code.

Are Graphs Hard in Rust?

Are Graphs Hard in Rust?

Harman's Hardness Arguments®

by Elijah Millgram

From Pacific Philosophical Quarterly 72(3), September 1991: 181-202. Electronic posting
with the kind permission of Blackwell Publishing.

But before doing all these things, let me address a necessary preliminary: what
"hard" means here. A problem is easy if you can do it in a reasonable amount
of time and with a reasonable amount of effort, without overtaxing your
memory, and so on.4 A problem is hard if it's not easy; it's hard in practice but
not in principle if you could solve the problem on a bigger, faster computer that

Thank you!

* Tim Zeitz

e Dev Purandare

* Daniel Bittman

* Peter Wilcox

* Lawrence Lawson
* Soham

American
Red Cross

fi

Children’s/(Cancer
Research Fund’

Thank you for your time.

@PayasR
(Twitter, GitHub, LinkedIn)

Bonus Slide: What about C++ Concepts?

BOOST _concept(Graph, (G))
{

typedef typename graph traits< ivertex descriptor vertex descriptor;
typedef typename graph traits< : tedge _descriptor edge descriptor;

typedef typename graph traits< : tdirected category directed category;

(o S v T v T) |
WONW W W

typedef typename graph traits< : tedge parallel category
edge parallel category;

typedef typename graph traits< G »::traversal category traversal category;

BOOST CONCEPT_USAGE (Graph)

{
BOOST_CONCEPT_ASSERT((DefaultConstructible< vertex_descriptor >));
BOOST_COMCEPT_ASSERT((EqualityComparable< vertex descriptor >));
BOOST COMCEPT_ ASSERT((Assignable< vertex descriptor »>));

b

G g5

&

